HUBBLE

Human obervatory based-on e-learning traces (HUBBLE)Date: 01/2015 – 12/2018Funding: ANRCall: GenericPartners: LIG (France), LIP6 (France), Lina (France), Liris (France), OpenClassRooms (France), ifé (France), STEF (France), Lab-STICC (France)URL: http://hubblelearn.imag.frLIUM Participant(s): Inès DabbebiSébastien GeorgeSébastien IksalMadeth MayThe objective of the Hubble project is to create a national observatory for the building and sharing of massive data analysis processes, […]

JEN.lab

Digital Epistemic Game Lab (JEN.lab)Date: 01/2014 – 12/2018Funding: ANRCall: GenericPartners: ifé (France), icar (France), Liris (France), Symetrix (France)URL: http://jenlab.frLIUM Participant(s): Sébastien GeorgeSébastien IksalGuillaume LoupIza MarfisiLahcen OubahssiClaudine Piau-ToffolonIn a context marked by the necessity of developing the attractiveness of training courses, receiving new types of learners and designing learning systems that help to develop skills rather […]

EUMSSI

Event Understanding through Multimodal Social (EUMSSI)Date: 11/2013 – 10/2016Funding: EU FP7Call: ICT-2013.4.1 Content analytics and language technologiesPartners: UPF (Spain), L3S (Germany), VSN (Spain), GFaI (Germany), IDIAP (Switzerland)URL: https://www.eumssi.eu/LIUM Participant(s): Yannick EstèveVincent JousseSylvain MeignierPaul DelégliseNathalie CamelinL’objectif principal de EUMSSI est de développer des technologies d’identification et d’agrégation d’informations non structurées provenant de sources de nature très […]

VERA

AdVanced ERror Analysis for speech recognition (VERA)Date: 01/2013 – 01/2016Funding: ANRCall: BlancPartners: LNE (France), LPP (France), LIMSI (France)URL: https://lium.univ-lemans.fr/en/vera/LIUM Participant(s): Nathalie CamelinDaniel LuzzatiPaul DelégliseSylvain MeignierYannick EstèveThe VERA project aims at developing tools for diagnostic, localization, and measurements of automatic transcription errors. This project is based on a consortium of first-rate academic actors in this field. […]

ARVAD

ARVADDate: 01/2013 – 01/2016Funding: Région Pays de la LoireCall: appel à projet “REALITE VIRTUELLE ET SITUATION DE HANDICAP”URL: http://perso.univ-lemans.fr/~loubah/ARVAD/LIUM Participant(s): Sébastien IksalLahcen OubahssiClaudine Piau-ToffolonLes ULIS (unités localisées pour l’inclusion scolaire) accueillent des élèves présentant des troubles cognitifs ou mentaux. L’objectif principal de la scolarisation dans la classe ULIS est le développement d’une autonomie adulte et […]

GraphiT

Specification of GRAPHIcal Visual Instructional Design Languages centered on LMS languages and directed towards Teachers-designers needs and practices (GraphiT)Date: 02/2012 – 09/2015Funding: ANRCall: Young resercherURL: https://projets-lium.univ-lemans.fr/graphitLIUM Participant(s): Nour El MawasSébastien IksalPierre LaforcadeLahcen OubahssiClaudine Piau-ToffolonHelping teachers to exploit the pedagogical potential of their Learning Management System Abstracting the technical design domain of LMSs in order to […]

Hop3x

Software: Hop3xURL: http://hop3x.univ-lemans.frDownload the eXist database and install it by following the instructions on http://exist.sourceforge.net/download.html. Download the Hop3x.zip file and unzip the Hop3x folder. The instructions for using Hop3x are available in french : Procedure_de_demarrage_d_Hop3x , Procedure_d_installation_d_Hop3x.

CSLM

Software: Continuous Space Language Model toolkit (CSLM)GitHub: https://git-lium.univ-lemans.fr/barrault/cslmURL: https://git-lium.univ-lemans.fr/barrault/cslm/-/archive/master/cslm-master.tar.gzAuthor(s): Holger SchwenkCSLM toolkit is open-source software which implements the so-called continuous space language model. The basic idea of this approach is to project the word indices onto a continuous space and to use a probability estimator operating on this space. Since the resulting probability functions are […]

MANY

Corpus: MANYLicence: GNU GPL v3URL: https://code.google.com/archive/p/many/Many is a MT System Combination software which architecture is described in the following picture :     The combination can be decomposed into three steps 1-Best hypotheses from all M systems are aligned in order to build M confusion networks (one for each system considered as backbone). All cn […]