Thèses en cours

Analyse et modélisation de l'activité humaine en environnement virtuel à partir des séries temporelles

Débuté le : 01/10/2018
Doctorant : Jean Delest D. DJADJA
Directeur(s) de Thèse : Sébastien George (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Ludovic Hamon (LIUM - IEIAH)
Financement : Bourse Ministérielle

L’objectif de recherche principal de la thèse est de proposer une système d'évaluation en temps-réel des activités pédagogiques des utilisateurs en réalité virtuelle à partir des données sur leurs évolutions dans le temps. ► Lire la suite

Analyse de données massives en temps réel pour l’extraction d’informations sémantiques et émotionnelles de la parole

Débuté le : 02/05/2018
Doctorant : Manon Pinel
Directeur(s) de Thèse : Yannick Estève (LIUM, LST)
Co-encadrant(s) de Thèse : Maris Tahon (LIUM, LST) & Anthony Rousseau (Allo-Media)
Financement : CIFRE

Les principaux objectifs de cette thèse sont de concevoir, implémenter et expérimenter des approches neuronales end-to-end dédiées à des tâches d’extraction d’informations sémantiques de la parole, étendues à la recherche d’informations paralinguistiques liées aux émotions. Clairement, deux tâches sont visées : l’extraction de sens et la détection d’émotions, qui pourront être réalisées de façon jointe ou disjointe. L’accent sera mis sur le traitement de masses de données en temps réel, qui offre de véritables opportunités industrielles. ► Lire la suite

Réseaux de neurones profonds pour le traitement de la langue orale et écrite

Débuté le : 04/09/2017
Doctorant : Antoine Caubrière
Directeur(s) de Thèse : Yannick Estève (LIUM, LST)
Co-encadrant(s) de Thèse : Antoine Laurent (LIUM, LST) & Emmanuel Morin (LS2N)
Financement : Projet RAPACE

L’objectif de cette thèse est de développer un système de détection d’entités nommées dans un flux audio qui s’appuiera uniquement sur un réseau neuronal profond. Jusqu’à présent, cette tâche est effectuée par l’intermédiaire de chaînes de traitements successifs. Aussi, les tâches de reconnaissance de la parole et de reconnaissance d’entités nommées entièrement neuronales ont été grandement améliorées ces dernières années ► Lire la suite

Visualisation des dynamiques collaboratives pour les apprenants d'un MOOC

Débuté le : 01/09/2017
Doctorant : Malik Koné
Directeur(s) de Thèse : Sébastien Iksal (LIUM - IEIAH), Souleyman Oumtanaga (LARIT-INPHB, Côte d'Ivoire)
Co-encadrant(s) de Thèse : Madeth May (LIUM - IEIAH)
Financement : Campus France (50%) + fonds propres (50%)

Les théories socio-constructivistes et connectivistes montrent l'importance de la collaboration pour l'apprentissage. Dans les MOOCs, elle a lieu dans les forums mais le volume colossal des interactions rend son suivi difficile par les apprenants autant que par les instructeurs. ► Lire la suite

Plateforme d’objets pédagogiques virtuels à base de patrons : une nouvelle solution pour faciliter la conception et l’opérationnalisation des simulations pédagogiques dans les EVAH

Débuté le : 01/09/2017
Doctorant : Oussema Madhi
Directeur(s) de Thèse : Sébastien Iksal (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Lahcen Oubahssi (LIUM - IEIAH)
Financement : Laval Agglomération et Conseil Départemental de la Mayenne

Avec l’émergence de la réalité́ virtuelle, l’informatique permet d’offrir de nouvelles expériences aux utilisateurs grâce à des possibilités d’interaction et d’immersion toujours plus performantes. Ces possibilités trouvent un grand intérêt dans le domaine de l’apprentissage. Les environnements virtuels permettent de créer des situations d’apprentissage originales et dynamiques, détachées des contraintes qui peuvent exister lors de formations réelles (danger, coût, incertitude) et apportant des avantages spécifiques (enrichissement des situations, rejeu, etc). ► Lire la suite

Vers une approche hybride pour l’analyse d’opinions en arabe

Débuté le : 01/09/2017
Doctorant : Amira Barhoumi
Directeur(s) de Thèse : Yannick Estève (LIUM, LST)
Co-encadrant(s) de Thèse : Nathalie Camelin (LIUM, LST) & Lamia Hadrich Belguith (MIRACL, Tunisie)
Financement : Convention de cotutelle (LIUM, LST) & (MIRACL, Tunisie)

L’analyse d’opinions est un domaine de recherche en plein essor et a fait l’objet de nombreuses études. Cette thèse vise à concevoir une approche pragmatique hybride pour l’analyse d’opinions en arabe. Elle consiste plus spécifiquement à injecter des connaissances hétérogènes pour la construction d’une architecture neuronale dans le but d’améliorer la performance de l'analyseur. ► Lire la suite

Segmentation thématique de transcriptions automatiques et appariement de documents pédagogiques dans un contexte de cours magistral

Débuté le : 23/01/2017
Doctorant : Salima Mdhaffar
Directeur(s) de Thèse : Yannick Estève (LIUM, LST)
Co-encadrant(s) de Thèse : Antoine Laurent (LIUM, LST), Nicolas Hernandez (LS2N), Solen Quiniou (LS2N)
Financement : ANR Projet PASTEL

Cette thèse s’inscrit dans le cadre du projet PASTEL (Performing Automated Speech Transcription for Enhancing Learning), qui vise à explorer le potentiel de la transcription automatique en temps réel pour l’instrumentation de situations pédagogiques mixtes, où les modalités d’interaction sont présentielles ou à distance, synchrones ou asynchrones. ► Lire la suite

Conception et évaluation d’environnements virtuels pédagogiques : application à la formation professionnelle

Débuté le : 01/01/2017
Doctorant : Pierre Gac
Directeur(s) de Thèse : Paul Richard (LARIS, équipe ISISV), Sébastien George (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Emmanuelle Richard (LARIS, équipe ISISV)
Financement : CIFRE (entreprise DEC industrie)

Le premier objectif scientifique de la thèse concerne la conception et le développement d’un outil logiciel permettant de configurer simplement des scénarios pédagogiques de différentes complexités (outil auteur). Cet outil proposera différents environnements virtuels (scènes 3D) spécifiques ainsi que des outils standardisés pouvant être importés dans les applications afin de simuler différentes tâches ou activités. ► Lire la suite

Reconnaissance de locuteurs à large échelle dans des documents audiovisuels, en interaction avec des annotateurs humains

Débuté le : 03/10/2016
Doctorant : Pierre-Alexandre Broux
Directeur(s) de Thèse : Sylvain Meignier (LIUM - LST)
Co-encadrant(s) de Thèse : David Doukhan, Simon Petitrenaud (LIUM - LST) & Jean Carrive (INA Expert)
Financement : CIFRE (ina EXPERT)

La thèse proposée s’articulera autour de la reconnaissance de locuteurs à large échelle dans les archives radio et télévisuelles de l’INA (Institut National de l’Audiovisuel), qui dispose d’une quantité impressionnante de documents. L’annotation manuelle de ces documents représente une source d’information précieuse pour l’exploitation et la commercialisation de ces données, mais nécessite un temps de travail considérable. Les annotations permettent d’enrichir les documents en décrivant notamment l’identité des locuteurs, au fil du document, ou les thèmes abordés. ► Lire la suite

Modélisation à contexte variable pour la reconnaissance du locuteur

Débuté le : 03/10/2016
Doctorant : Florent Desnous
Directeur(s) de Thèse : Sylvain Meignier (LIUM - LST)
Co-encadrant(s) de Thèse : Anthony Larcher (LIUM - LST)
Financement : Contrat Doctoral

L’objectif de cette thèse est de développer des modèles de locuteur à contexte variable (scalables) qui intègrent l’information phonétique produite par le locuteur. Ces modèles seront appris sur une quantité significative de données d’enrôlement (>30s) et s’adapteront aux données de tests pour garantir la meilleure comparaison possible en fonction du contexte phonétique reconnu dans l’échantillon de test. Ces modèles permettront d’améliorer les performances des systèmes de reconnaissance et d’élargir le cadre applicatif de la reconnaissance du locuteur. ► Lire la suite

Processus de conception continue d’outils informatiques innovants : application à la transcription automatique pour les EIAH

Débuté le : 01/10/2016
Doctorant : Vincent Bettenfeld
Directeur(s) de Thèse : Christophe Choquet (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Claudine Piau-Toffolon (LIUM - IEIAH), Raphaëlle Crétin-Pirolli (Centre de Recherche en Éducation de Nantes)
Financement : ANR

L’objectif de recherche principal de la thèse est de proposer une méthodologie d'instrumentation des activités pédagogiques permettant de nouveaux usages, dans une perspective de conception continue, itérative et s’appuyant sur la prise en compte des besoins informationnels et communicationnels. ► Lire la suite

Interactions multimodales sensibles au contexte pour les systèmes de réalité augmentée (vers une symbiose humain-machine)

Débuté le : 01/09/2016
Doctorant : Damien Brun
Directeur(s) de Thèse : Sébastien George (LIUM - IEIAH) & Charles Gouin-Vallerand (LICEF de l'Université du Québec)
Co-encadrant(s) de Thèse :
Financement : CRSNG (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

À l’image des téléphones intelligents, les visiocasques de réalité augmentée sont des appareils voués à devenir ubiquitaires en proposant un accès à l’information toujours plus rapide. Il n’y a théoriquement pas de limite dans leur application, tous les domaines sont concernés, et nombreux sont ceux ayant déjà été à l’étude : médecine, militaire, industrie et maintenance, formation et éducation, art et divertissement… ► Lire la suite

Architectures neuronales multilingues pour le traitement automatique des langues naturelles

Débuté le : 01/09/2016
Doctorant : Adrien Bardet
Directeur(s) de Thèse : Yannick Estève (LIUM, LST)
Co-encadrant(s) de Thèse : Loïc Barrault (LIUM, LST) & Fethi Bougares (LIUM, LST)
Financement : M2CR

L’objectif de cette thèse est l’utilisation d’approches neuronales multilingues pour la traduction automatique. L’efficacité de ce type d’approche a déjà été démontré dans des cadres monolingues, c’est-à-dire une langue source traduite dans une langue cible. ► Lire la suite

Construction rapide, performante et mutualisée de systèmes multilingues pour la reconnaissance et la synthèse de la parole

Débuté le : 15/03/2016
Doctorant : Kevin Vythelingum
Directeur(s) de Thèse : Yannick Estève (LIUM, LST)
Co-encadrant(s) de Thèse : Anthony Larcher (LIUM, LST) & Olivier Rosec (Voxygen)
Financement : CIFRE (Voxygen)

Le développement des technologies vocales s’est fait de manière morcelée par quelques centres de recherche travaillant chacun sur un nombre réduit de langues. La problématique du développement rapide de langues ne s’est in fine posée que relativement tardivement. Cette problématique est maintenant considérée comme stratégique par les acteurs industriels, l’enrichissement rapide d’un catalogue de langues contribuant naturellement à ouvrir de nouveaux marchés. ► Lire la suite

Compréhension de la parole dans le cadre d’interactions entre humains et machines

Débuté le : 01/10/2015
Doctorant : Edwin Simonnet
Directeur(s) de Thèse : Yannick Estève (LIUM, LST)
Co-encadrant(s) de Thèse : Nathalie Camelin (LIUM, LST)
Financement : Projet Européen (JOKER) / Région

Ce travail de thèse s’effectue en lien avec le projet européen JOKER (JOKe and Empathy of a Robot/ECA: Towards social and affective relations with a robot). Ce projet est financé par le programme CHIST-ERA (European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net). ► Lire la suite

Conception de tableaux de bords dynamiques, adaptatifs et contextuels

Débuté le : 01/10/2015
Doctorant : Inès Dabbebi
Directeur(s) de Thèse : Sébastien IKSAL (LIUM-IEIAH) & Serge Garlatti (Labsticc-IHSEV)
Co-encadrant(s) de Thèse : Jean-Marie Gilliot (Labsticc-IHSEV)
Financement : Projet ANR Hubble

Ce sujet de thèse s’intègre dans une problématique générale lié aux EIAH et plus précisément à la construction des processus d’analyse pour accompagner la prise de décision des acteurs intervenant dans le système d’enseignement et d’apprentissage (enseignants, apprenants, concepteurs, administratifs, etc.). Le chercheur en EIAH est également associé pour la production de concepts, d’indicateurs ou de modèles. Nous nous intéressons ici plus spécifiquement à l’étape de visualisation de ce processus d’analyse en proposant des modèles de description des différents aspects d’un tableau de bord et un processus de génération permettant de produire un tableau de bord adaptatif, contextuel et interactif pour les acteurs opérationnels. Pour définir ce qu’est un tableau de bord pour l’apprentissage, nous nous appuyons sur la définition suivante de Schwendimann: “A learning dashboard is a single display that aggregates different indicators about learner(s), learning process(es), and/or learning context(s) into one or multiple visualizations”. Dans cette définition, nous relevons notamment l'agrégation d’indicateurs sur les apprenants, les processus d’apprentissage et la prise en compte du contexte d’apprentissage, ce qui correspond aux aspects adaptatifs et contextuels de nos tableaux de bord. Ce travail s’inscrit dans le contexte du projet ANR HUBBLE dont l’objectif est de créer un observatoire national pour la construction et le partage de processus d’analyse de données massives, issues des traces laissées dans des environnement de type e-learning. L’une des particularités du projet réside dans l’utilisation de plusieurs plateformes d’analyse, telles que UTL (Usage Tracking Language), KTBS (Kernel for Trace Based System) et UnderTracks, séparément ou conjointement. Un tableau de bord HUBBLE doit par conséquent pouvoir intégrer la visualisation d’indicateurs provenant de ces différentes plateformes. Nous avons cherché à identifier des structures génériques de tableaux de bord dynamiques, adaptatifs et contextuels permettant de répondre aux besoins des utilisateurs, ces structures devant être capitalisables et réutilisables pour faciliter la tâche des utilisateurs. Les questions qui en découlent sont (i) est-ce qu’il est possible de décrire un tableau de bord générique, mais dédié à un objectif d’observation ? (ii) est-ce que le contexte est un élément important dans la génération du tableau de bord adaptatif ? (iii) est-ce qu’il est possible de générer dynamiquement un tableau de bord adapté à un utilisateur et à son activité ? ► Lire la suite

Étude et conception d’Environnements Informatiques Ludiques, dédiés à l’Apprentissage Humain de Gestes à partir de Mouvements Capturés

Débuté le : 01/09/2015
Doctorant : Quentin Couland
Directeur(s) de Thèse : Sébastien George (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Ludovic Hamon (LIUM - IEIAH)
Financement : Bourse des collectivités Lavalloises

L’objectif de recherche principal de la thèse est de proposer une méthodologie d'instrumentation des activités pédagogiques permettant de nouveaux usages, dans une perspective de conception continue, itérative et s’appuyant sur la prise en compte des besoins informationnels et communicationnels. ► Lire la suite

Traduction Automatique Multimodale Neuronale

Débuté le : 30/10/2014
Doctorant : Ozan Caglayan
Directeur(s) de Thèse : Paul Deléglise (LIUM, LST)
Co-encadrant(s) de Thèse : Loïc Barrault (LIUM, LST) & Fethi Bougares (LIUM, LST)
Financement : Projet M2CR

Cette thèse a pour but de développer des architectures neuronales pour la traduction automatique intégrant différents types d'informations afin d'améliorer la qualité des traductions produites. Plus précisement, on s'intéresse à guider les réseaux de neurones vers l'apprentissage de représentations multimodales en exploitant des corpus parallèles et multimodaux (images accompagnées de leurs descriptions). ► Lire la suite

Thèses soutenues

Utilisation de modèles gaussiens pour l’adaptation au locuteur de réseaux de neurones profonds dans un contexte de modélisation acoustique pour la reconnaissance de la parole.

Débuté le : 01/12/2014
Doctorant : Natalia Tomashenko
Directeur(s) de Thèse : Yannick Estève (LIUM - LST)
Co-encadrant(s) de Thèse : Anthony Larcher (LIUM - LST)
Financement :

Les différences entre conditions d’apprentissage et conditions de test peuvent considérablement dégrader la qualité des transcriptions produites par un système de reconnaissance automatique de la parole (RAP). L’adaptation est un moyen efficace pour réduire l’inadéquation entre les modèles du système et les données liées à un locuteur ou un canal acoustique particulier. Il existe deux types dominants de modèles acoustiques utilisés en RAP : les modèles de mélanges gaussiens (GMM) et les réseaux de neurones profonds (DNN). ► Lire la suite

Traduction Automatique Neuronale Factorisé

Débuté le : 01/10/2014
Doctorant : Mercedes García Martínez
Directeur(s) de Thèse : Yannick Estève (LIUM, LST)
Co-encadrant(s) de Thèse : Loïc Barrault (LIUM, LST) & Fethi Bougares (LIUM, LST)
Financement : This work was partially funded by the French National Research Agency (ANR) through the CHIST-ERA M2CR project, under the contract number ANR-15-CHR2-0006-01

La diversité des langues complexifie la tâche de communication entre les humains à travers les différentes cultures. La traduction automatique est un moyen rapide et peu coûteux pour simplifier la communication interculturelle. ► Lire la suite

Conception et Développement d’interactions immersives pour jeux sérieux

Débuté le : 01/10/2014
Doctorant : Guillaume Loup
Directeur(s) de Thèse : Sébastien George (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Audrey SERNA (LIRIS - SICAL)
Financement : ANR

Cette thèse s’inscrit dans le domaine de l’ingénierie des Environnements Virtuels pour l’Apprentissage Humain (EVAH) et a été financée par le projet ANR JEN.lab. Les jeux épistémiques numériques (JEN) sont une catégorie des jeux sérieux dédiés à la résolution de problèmes complexes, pluridisciplinaires et non-déterministes. L’objectif de ces JEN est de proposer des situations d’apprentissage authentiques du point de vue des interactions qu’elles permettent, les apprenants pouvant alors construire et ancrer des connaissances dans leur contexte d’usage. ► Lire la suite

Assister les enseignants dans le processus de scénarisation pédagogique des MOOCs.

Débuté le : 01/10/2014
Doctorant : Aicha Bakki
Directeur(s) de Thèse : Sébastien George (LIUM-IEIAH) & Chihab Cherkaoui (IRF-SIC, Université Ibn Zohr)
Co-encadrant(s) de Thèse : Lahcen Oubahssi
Financement : Coopération Maroco-Française (Institut Français au Maroc, CNRST)

Ce projet de thèse s’intègre dans une problématique générale liée aux EIAH et plus spécifiquement aux MOOCs (Massive Open Online Courses). Les travaux effectués dans ce champ disciplinaire impliquent plusieurs voies de recherches complémentaires. Nous nous focaliserons principalement sur trois aspects principaux de ces recherches. ► Lire la suite

Étude sur les représentations continues de mots appliquées à la détection automatique des erreurs de reconnaissance de la parole.

Débuté le : 01/10/2014
Doctorant : Sahar Ghannay
Directeur(s) de Thèse : Yannick Estève (LIUM - LST)
Co-encadrant(s) de Thèse : Nathalie Camelin (LIUM - LST)
Financement : Région Pays de la Loire, EUMSSI (Event Understanding through Multimodal Social Stream Interpretation)

Nous abordons, dans cette thèse, une étude sur les représentations continues de mots (en anglais word embeddings) appliquées à la détection automatique des erreurs dans les transcriptions de la parole. En dépit de la performance des systèmes de reconnaissance automatique de la parole actuels, de nombreuses erreurs sont encore générées. Cela s’explique par leur sensibilité aux diverses variabilités liées à l’environnement acoustique, au locuteur, au style de langage, à la thématique du discours, etc. ► Lire la suite

Analyse en locuteurs de collections de documents multimédia.

Débuté le : 01/04/2014
Doctorant : Gaël Le Lan
Directeur(s) de Thèse : Sylvain Meignier (LIUM - LST)
Co-encadrant(s) de Thèse : Anthony Larcher (LIUM - LST)
Financement : Orange

La segmentation et regroupement en locuteurs (SRL) de collection cherche à répondre à la question « qui parle quand ? » dans une collection de documents multimédia. C’est un prérequis indispensable à l’indexation des contenus audiovisuels. La tâche de SRL consiste d’abord à segmenter chaque document en locuteurs, avant de les regrouper à l’échelle de la collection. ► Lire la suite

Jeux Éducatifs Mobiles : JEM iNVENTOR, un outil auteur fondé sur une approche de conception gigogne

Débuté le : 01/09/2014
Doctorant : Aous Karoui
Directeur(s) de Thèse : Sébastien George (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Iza Marfisi (LIUM - IEIAH)
Financement : Allocation de recherche du ministère de l'enseignement supérieur

L'essor des périphériques mobiles (ex. tablettes, smartphones) ainsi que leurs applications pédagogiques et ludiques ont contribué à la naissance des Jeux Éducatifs Mobiles (JEM). De nombreux chercheurs ont prouvé les effets positifs de ces JEM sur la motivation des apprenants et même sur certains apprentissages. ► Lire la suite

Assistance à la réutilisation de scénarios d’apprentissage : une approche guidée par l’évaluation du contexte d’usage à base d’indicateurs

Débuté le : 01/09/2014
Doctorant : Mariem Chaabouni
Directeur(s) de Thèse : Sébastien George (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Christophe Choquet (LIUM - IEIAH) & Henda Ben Ghezala
Financement :

Les travaux de thèse s’inscrivent dans le domaine des Environnements Informatiques pour l’Apprentissage Humain (EIAH). Ils portent sur la proposition de processus, méthodes et outils pour assister les enseignants et les formateurs dans la réutilisation et la capitalisation des scénarios d’apprentissage. L’approche proposée nommée CAPtuRe a pour objectif de modéliser, évaluer et exploiter les informations contextuelles relatives à un scénario en se basant sur des observations effectives de ce dernier pour améliorer la réutilisation. ► Lire la suite

Composition et transformation de modèles pour la spécification de langages graphiques de conception pédagogique centrés plate-formes de formation

Débuté le : 01/09/2013
Doctorant : Esteban Loiseau
Directeur(s) de Thèse : Sébastien George (LIUM - IEIAH)
Co-encadrant(s) de Thèse : Sébastien Iksal (LIUM - LST)
Financement :

Cette thèse s’inscrit à la fois dans le domaine scientifique de l’ingénierie des Environnements Informatiques pour l’Apprentissage Humain (EIAH) et de l’Ingénierie Dirigée par les Modèles (IDM). Elle s’est déroulée dans le cadre du projet de recherche ANR GraphiT. Ces travaux sont fondés sur le constat que les enseignants sous-exploitent les plate-formes de formation en ligne mises à leur disposition. ► Lire la suite